सरल लोलक की समय अवधि

Saral Lolak Ki Samay Awadhi

GkExams on 24-04-2019


(simple pendulum in hindi) सरल लोलक क्या है , परिभाषा , उदाहरण , संरचना चित्र , सिद्धांत , समय अवधि : जब एक द्रव्यमान रहित और पूर्ण प्रत्यास्थ डोरी , जिसका एक सिरा दृढ आधार से बंधा हो और दुसरे सिरे पर यदि एक बिंदु द्रव्यमान को लटका दिया जाए तो इस प्रकार की व्यवस्था को सरल लोलक कहते है।
याद रहे की डोरी की लम्बाई का मान बढ़ना नहीं चाहिए और जिस दृढ से डोरी का सिरा बंधा है वह घर्षण रहित होना चाहिए जैसा चित्र में दर्शाया गया है।

जब सरल लोलक (पेंडुलम) को इसकी साम्यावस्था से कुछ विस्थापित कर छोड़ा जाता है तो यह दोलन करना प्रारंभ कर देता है और गुरुत्वाकर्षण बल इसे अपनी साम्यावस्था में ले जाने का प्रयास करता है अर्थात गुरुत्वाकर्षण बल प्रत्यानयन बल की तरह कार्य करता है अत: पेंडुलम गुरुत्वाकर्षण बल के प्रभाव में दोलन गति करता रहता है।
माना पेंडुलम को इसकी साम्यावस्था से s दुरी पर ले जाकर छोड़ा जाता है , s विस्थापन से डोरी में उर्ध्वाधर से θ कोण बन जाता है जैसा चित्र में दिखाया गया है –

चूँकि डोरी पर एक बिंदु द्रव्यमान लटका हुआ है , इस द्रव्यमान पर गुरुत्वाकर्षण बल mg नीचे की तरफ कार्य करेगा , इस बल mg को घटकों के रूप में वियोजित करने पर एक घटक mg cosθ , डोरी के तनाव बल से संतुलित हो जाता है लेकिन दूसरा घटक mg sinθ , असन्तुलित है। यह बल द्रव्यमान को इसकी साम्यावस्था में ले जाने का प्रयास करता है अर्थात यह बल प्रत्यानयन बल की तरह कार्य करता है।
जब विस्थापन s बहुत कम हो , उस दशा में यह एक सीधे रेखा के रूप में कार्य करता है।
अत: इस सीधी रेखा पर कार्यरत बल

∴   F = −mg sin θ            …… (1)

यदि कोण का मान बहुत छोटा हो अर्थात विस्थापन बहुत कम हो तो कोणीय विस्थापन sin θ ≈ θ होगा।
अत:

F = −mg θ              …… (2)

θ = S/l

अत:

F = – mg (S/l)

चूँकि हमने न्यूटन के नियम में पढ़ा था की F = ma होता है।

दोनों समीकरणों को तुलना करने पर

(पेंडुलम में उत्पन्न त्वरण) a = = -gx/l          …… (3)

यहाँ ऋणात्मक चिन्ह यह दर्शाता है की पेंडुलम (सरल लोलक) में उत्पन्न त्वरण का मान , विस्थापन के विपरीत तरफ होता है।

चूँकि लोलक की गति सरल आवर्त गति है अत: उत्पन्न त्वरण कोणीय त्वरण होता है जिसका मान निम्न प्रकार दिया जाता है –

a = −ω2S

त्वरण की दोनों समीकरणों की तुलना करने पर

ω2 = g/l    or   ω = √(g/l)              …… (4)

दोलन गति का आवर्त काल (T) = T = 2π/ω होता है।

इस समीकरण में w का मान रखने पर हमें दोलन का आवर्तकाल का सूत्र निम्न प्राप्त होता है –

 तथा पेंडुलम की आवृत्ति अर्थात एक सेकंड में किये गए दोलन का मान निम्न सूत्र से ज्ञात किया जाता है –


GkExams on 24-04-2019

(simple pendulum in hindi) सरल लोलक क्या है , परिभाषा , उदाहरण , संरचना चित्र , सिद्धांत , समय अवधि : जब एक द्रव्यमान रहित और पूर्ण प्रत्यास्थ डोरी , जिसका एक सिरा दृढ आधार से बंधा हो और दुसरे सिरे पर यदि एक बिंदु द्रव्यमान को लटका दिया जाए तो इस प्रकार की व्यवस्था को सरल लोलक कहते है।
याद रहे की डोरी की लम्बाई का मान बढ़ना नहीं चाहिए और जिस दृढ से डोरी का सिरा बंधा है वह घर्षण रहित होना चाहिए जैसा चित्र में दर्शाया गया है।

जब सरल लोलक (पेंडुलम) को इसकी साम्यावस्था से कुछ विस्थापित कर छोड़ा जाता है तो यह दोलन करना प्रारंभ कर देता है और गुरुत्वाकर्षण बल इसे अपनी साम्यावस्था में ले जाने का प्रयास करता है अर्थात गुरुत्वाकर्षण बल प्रत्यानयन बल की तरह कार्य करता है अत: पेंडुलम गुरुत्वाकर्षण बल के प्रभाव में दोलन गति करता रहता है।
माना पेंडुलम को इसकी साम्यावस्था से s दुरी पर ले जाकर छोड़ा जाता है , s विस्थापन से डोरी में उर्ध्वाधर से θ कोण बन जाता है जैसा चित्र में दिखाया गया है –

चूँकि डोरी पर एक बिंदु द्रव्यमान लटका हुआ है , इस द्रव्यमान पर गुरुत्वाकर्षण बल mg नीचे की तरफ कार्य करेगा , इस बल mg को घटकों के रूप में वियोजित करने पर एक घटक mg cosθ , डोरी के तनाव बल से संतुलित हो जाता है लेकिन दूसरा घटक mg sinθ , असन्तुलित है। यह बल द्रव्यमान को इसकी साम्यावस्था में ले जाने का प्रयास करता है अर्थात यह बल प्रत्यानयन बल की तरह कार्य करता है।
जब विस्थापन s बहुत कम हो , उस दशा में यह एक सीधे रेखा के रूप में कार्य करता है।
अत: इस सीधी रेखा पर कार्यरत बल

∴ F = −mg sin θ …… (1)


यदि कोण का मान बहुत छोटा हो अर्थात विस्थापन बहुत कम हो तो कोणीय विस्थापन sin θ ≈ θ होगा।
अत:

F = −mg θ …… (2)

θ = S/l

अत:

F = – mg (S/l)

चूँकि हमने न्यूटन के नियम में पढ़ा था की F = ma होता है।

दोनों समीकरणों को तुलना करने पर

(पेंडुलम में उत्पन्न त्वरण) a = = -gx/l …… (3)

यहाँ ऋणात्मक चिन्ह यह दर्शाता है की पेंडुलम (सरल लोलक) में उत्पन्न त्वरण का मान , विस्थापन के विपरीत तरफ होता है।

चूँकि लोलक की गति सरल आवर्त गति है अत: उत्पन्न त्वरण कोणीय त्वरण होता है जिसका मान निम्न प्रकार दिया जाता है –

a = −ω2S

त्वरण की दोनों समीकरणों की तुलना करने पर

ω2 = g/l or ω = √(g/l) …… (4)

दोलन गति का आवर्त काल (T) = T = 2π/ω होता है।

इस समीकरण में w का मान रखने पर हमें दोलन का आवर्तकाल का सूत्र निम्न प्राप्त होता है –

तथा पेंडुलम की आवृत्ति अर्थात एक सेकंड में किये गए दोलन का मान निम्न सूत्र से ज्ञात किया जाता है –




Comments

आप यहाँ पर लोलक gk, अवधि question answers, general knowledge, लोलक सामान्य ज्ञान, अवधि questions in hindi, notes in hindi, pdf in hindi आदि विषय पर अपने जवाब दे सकते हैं।

Labels: , , , , ,
अपना सवाल पूछेंं या जवाब दें।




Register to Comment